Research Progress of Polycyclic Polyprenylated Acylphloroglucinols

—Total synthesis of adamantane-PPAPs

hyperibone K

plukenetione A

Group Seminar
Zhepei Lu
2022-09-29

John A. Porco, Jr.
CMD director and Professor of Chemistry
Boston University

Curriculum Vitae:

1. Education:

1981-1985, B.A. in Chemistry(summa cum laude, with Honors), College of the Holy Cross
1985-1988, M.S. in Organic Chemistry, Yale

University

1988-1992, Ph.D. in Organic Chemistry, Havard

University

(Director: **Prof. Stuart Schreiber**)

2. Work experience:

1992, postdoctoral fellow, Scripps Research Institude

(Director: **Prof. Chi Huey Wong**)

1992-1999, Associate of Avalon Ventures

1999-current, **Boston University**

Representative Chinese PI educated in Porco group

Prof. Xiaoguang Lei Peking University

(+)-Panepophenanthrin, Angew, 2003 (-)-Kinamycin C, JACS, 2006

Prof. Suwei Dong Peking University

(+)-Chamaecypanone C, Angew, 2009

Prof. Huan Cong
Tech Inst Phys & Chem, CAS
(+/-)-Sorocenol B, OL, 2012

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

Introduction and Classification of Diverse PPAPs

Structural features of reprensentative Type A and Type B BPAPs

Type B BPAPs:

- Obtained from the **genus** *Garcinia*
- Acyl group located at C-3 position
- Most of them share a characteristic hydroxylated benzoyl group
- Benzene group further oxidized and cyclized with O-2 or O-4

Type B BPAPs

Type A BPAPs

 $R_1=i$ -Pr, s-Bu or Ph R_2 =prenyl, geranyl, Me, etc.

Type A BPAPs:

- Obtained from the **genus** *Hypericum*
- Acyl group located at C-1 position
- Usually obtained as keto-enol tautomeric mixtures
- C-3 and C-5 oxidized and further cyclized with O-2 or O-4 to form furan, pyran, etc..

Common features:

- 1. [3.3.1] nonane skeleton
- 2. Quaternary center at both bridge head
- 3. Enolic β -diketone system

Representative total synthesis of BPAPs

Shibasaki, JACS, 2005 Strategy: RCM

Barriault, Angew, 2014
Strategy: GoldCatalyzed Cyclization

Simpkins, JOC, 2007
Strategy: Effenberger
Cyclization

Maimone, JACS, 2015 Strategy: Oxidative ring expansion

Nakada, JOC, 2012 Strategy: Cyclopropanation&Ring openning

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

Target PPAPs of Porco group

clusianone

7-epi-nemerosone

Type B BPAPs

Type A BPAPs

Isolated from the floral resins of Clusia species

hyperibone K:

Type B adamantane PPAPs

isolated from the aerial parts of Hypericum scabrum

hyperibone K

plukenetione A

plukenetione A:

Type A adamantane PPAPs

isolated from Clusia plukenetii (Guttiferae)

the first natural product bearing an adamantane framework isolated from plant sources

Acta Cryst. **1976**, B32, 1793 Phytochemistry **1999**, 50, 1073 J. Nat. Prod. **2004**, 67, 1870 Tetrahedron Lett. **1996**, 37, 8663

Ohkata's construction of bicyclo[3.3.1] ring system

Tetrahedron Lett. 2004, 45, 7401

Porco's idea: Alkylative Dearomatization-Annulation

Model studies:

J. Am. Chem. Soc. 2007, 129, 12682-12683

Scope evaluation of Alkylative Dearomatization-Annulation

entry	substrates	Michael acceptors	conditions	products	yield(%)
1	OH O HO OH	2 equiv. OAc CO ₂ Me	LiHMDS (3 equiv) THF, 0°C M	MeO ₂ C OH	0 84 18
2	OH O HO OH	1 equiv. OAc CN 19	KHMDS (2 equiv) THF, 65°C	NC OMeO	20 41ª
3	5	1 equiv. OAc CO ₂ Me	KHMDS (2 equiv) THF, 65°C	MeO ₂ C	$63^{a, b}$ $(\beta: \alpha = 4:1)$ MeO_2C^{3}

^a Yield after enol methylation using TMSCHN₂ (2 equiv) and *i*Pr₂EtN (1.5 equiv). ^b Mixture of enol ether isomers produced, one shown for clarity.

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

Total synthesis of clusianone OH ŌН ÓН `Ph `Ph prenyl bromide 2.0 equiv KHMDS OHC. `Ph HO HO' aq. KOH, 0 °C THF, 65 °C, 4h HO' HO' (OAc 3-1 3-2 ŌН Ö TMSCHN₂, iPr₂EtN 1) // MgBr `Ph `Ph 2) Ac₂O, DMAP AcO ОМе **`**OMe OHC' OHC' 3-3 3-4(two enol ether isomer) 3-5 `Ph `Ph LiCI, DMSO 1) Pd(PPh₃)₄, HCO₂NH₄ **`**OMe `OH 2) Grubbs II, 2-methyl-2-butene 3-6 clusianone

J. Am. Chem. Soc. 2007, 129, 12682-12683

An unexpected discovery: access to an adamantane core

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

Total synthesis of hyperibone K

hyperibone K

Retrosynthetic analysis

J. Am. Chem. Soc. 2010, 132, 13642–13644

Total synthesis of hyperibone K

J. Am. Chem. Soc. 2010, 132, 13642–13644

- 1. Brief review of Type A and Type B BPAPs
- 2. Original design for the bicyclo[3.3.1] ring system of Porco group
- 3. Total synthesis of clusianone
- 4. Total synthesis of hyperibone K
- 5. Total synthesis of plukenetione A

Attempted alkylative dearomatization-annulation

high thermodynamic stability

J. Am. Chem. Soc. **2010**, 132, 14212–14215

Silylative cyclization to the bicyclo[3.3.1] ring system

Unexpected production of the Type B Adamantane Core

Synthesis of the Type A Adamantane Framework

Possible reaction mechanisms for adamantane formation

Retro-Aldol/Addition attempt

Proposal for diastereoselectivity in the Grignard Addition

Rationale for stereoselectivity

Completion of the synthesis of plukenetione A

Synthetic route of plukenetione A

supplements

Palladium-catalyzed formate reduction:

Path E
$$Nu^{\Theta}(Ref.^{2})$$

Path C $HCO_{2}H \cdot NR_{3}$

Path D $Pd(O)L_{n}$

Path B $R \cdot CH_{3}$

R

CH₃

R

CH₄

R

CH₄

R

CH₄

R

CH₄

R

CH₄

Synthesis **1986**, 623 Org. Lett. **2000**, 2, 107

Proposed Binding Model of chiral PTC and compound 4-1

J. Am. Chem. Soc. **2010**, 132, 13642–13644