

Classical Reaction, Eternal Vitality

陈丽君

2021.05.27

Rolf Huisgen (1920–2020)

1,3-Dipolar Cycloaddition Reactions

Huisgen Reaction

1,3-Dipoles

D. Trauner, Rolf Huisgen (1920–2020), *Nat. Chem. Biol.* **2020**, *16*, 711. R. Huisgen, *Angew. Chem., Int. Ed. Engl.* **1963**, *2*, 565-532.

Nitrile Oxides in the Total Synthesis of Natural Products

----via 1,3-Dipolar Cycloaddition Reactions

Contents

- Reactivity & Stereoselectivity
- Applications in the Total Synthesis of Natural Products
- Mechanism & Supplement

Reactivity: Frontier Molecular Orbital

The 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides

Reactivity: Electronic and Steric Effect

- 1. Electron-withdrawing substituents on the nitrile oxides increase the reactivity
- 2. Electron-donating substituents on the olefin increase the reactivity
- 3. Conjugating substituents raise an olefin's HOMO and lower its LUMO, increasing the reactivity
- 4. The steric effect of a single alkyl substituent on an alkene decreases reactivity.
- 5. Trans-disubstituted alkenes are more reactive than the cis-isomers.
- 6. Trisubstituted alkenes are even less reactive and steric effects dominate.
- 7. The degree of strain in cyclic olefins and their ease of deformation to form cycloaddition transition states also affect reactivity.

Stereoselectivity: The Addition of Nitrile Oxides to Chiral Allyl Ethers

K. N. Houk, et al. J. Am. Chem. Soc. 1984, 106, 3880-3882; J. Am. Chem. Soc. 1984, 106, 2754-2755.

Stereoselectivity: Metal Coordination Control in 1,3-Dipolar Cycloadditions

Kanemasa reaction: Mg^{II}-Mediated Cycloadditions of Nitrile Oxides

Shuji Kanemasa, et al. J. Am. Chem. Soc. 1994, 116, 2324-2339.

Erick M. Carreira, et al. Angew. Chem. Int. Ed. 2001, 40, 2082-2085

Stereoselectivity: Metal Coordination Control in 1,3-Dipolar Cycloadditions

Katsuhiko Inomata, et al. Chem. Lett. 1993, 1847-1850.

Applications in the Total Synthesis of Natural Products

Intermolecular Cycloaddition

Stephen F. Martin, et al. *J. Org. Chem.* **1987**, *52*, 3706-3708 Stephen F. Martin, et al, *J. Org. Chem.* **1989**, *54*, 2209-2216

$$\begin{array}{c} 1) \text{ NCS} \\ \hline \\ 2) \text{ TEA, rt, 5 d} \\ \hline \\ 2\text{-Me-furan} \\ \hline \\ 6\text{-}\\ 7\text{-}\\ \end{array} \begin{array}{c} 1) \text{ DMDO, DCM} \\ \hline \\ 2) \text{ NaBH}_3\text{CN} \\ \hline \\ \\ H_2\text{O, THF} \end{array} \begin{array}{c} 1) \text{ DMDO, DCM} \\ \hline \\ 2) \text{ NaBH}_3\text{CN} \\ \hline \\ \\ \\ H_2\text{O, THF} \end{array} \begin{array}{c} 1) \text{ DMDO, DCM} \\ \hline \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \text{O °C ~ rt} \\ \text{dr > 95:5} \end{array} \begin{array}{c} \text{O NH}_2 \\ \hline \\ \\ \\ \\ \end{array} \begin{array}{c} \text{COOH} \\ \\ \text{NH}_2 \\ \hline \\ \\ \\ \end{array} \begin{array}{c} \text{COOH} \\ \\ \text{NH}_2 \\ \hline \\ \\ \end{array}$$

Volker Jäger, et al. Angew. Chem. Int. Ed. 2000, 39, 910-912

Intermolecular Cycloaddition

Samuel J. Danishefsky, et al. J. Am. Chem. Soc. 2008, 130, 16786-16790

Intermolecular Cycloaddition: Kanemasa Reaction

Alois Fürstner, et al. *Angew. Chem. Int. Ed.* **2006**, *45*, 5510-5515 Alois Fürstner, et al. *Chem. Eur. J.* **2013**, *19*, 3596-3608.

Pat N. Confalone, et al. J. Am. Chem. Soc. 1980, 102, 1954-1960

Martin E. Maier, et al. Eur. J. Org. Chem. 2021, 2549-2556

Alan P. Kozikowski, et al. J. Am. Chem. Soc. 1980, 102, 4265-4267

K. C. Nicolaou, et al. J. Am. Chem. Soc. 1992, 114, 3134-3136; J. Am. Chem. Soc. 2015, 137, 8716-8719

Erick M. Carreira, et al. J. Am. Chem. Soc. 2015, 137, 6084-6096

Tohru Fukuyama, et al. Org. Lett. 2018, 20, 119-121.

17

Tohru Fukuyama, et al. Angew. Chem. Int. Ed. 2017, 56, 1549-1552.

Shuanhu Gao, et al. J. Am. Chem. Soc. 2019, 141, 16208-16212

Raymond L. Funk, et al. Org. Lett. 2001, 3, 2611-2613

Erick M. Carreira, et al. J. Am. Chem. Soc. 2020, 142, 17802-17809

Hanfeng Ding, et al. Org. Biomol. Chem. 2015, 13, 1643-1646.

Xiaojiang Hao, et al. Org. Lett. 2014, 16, 1076-1079

Erik J. Sorensen, et al. Org. Lett. 2009, 11, 5394-5397

Masakatsu Shibasaki, et al. Heterocycles, 1992, 33, 161-171; Tetrahedron Lett. 1992, 33, 4937-4940.

Intramolecular Cycloaddition: To Construct the Macrocycle

Jongkook Lee, et al. J. Org. Chem. 2016, 81, 2612-2617.

Br₂C=NOH: Applications in the Total Synthesis

Phil S. Baran, et al. J. Am. Chem. Soc. 2009, 131, 17066-17067

Br₂C=NOH: Applications in the Total Synthesis

Erick M. Carreira, et al. Angew. Chem. Int. Ed. 2015, 54, 11227-11230

David Y.-K. Chen, et al. Angew. Chem. Int. Ed. 2017, 56, 12277-12281

Mechanism & Supplement

Summary: The Tranformations of Nitrile Oxides in 1,3-DPCA

Teruaki Mukaiyama, et al. J. Am. Chem. Soc. 1960, 20, 5339-5342

NaX or KX, oxone then Base

NaX or KX, oxone then Base

NaX or KX
$$\xrightarrow{\text{oxone}}$$

NaX or KX $\xrightarrow{\text{oxone}}$

Rongbiao Tong, et al. Org. Lett. 2019, 21, 315-319

Satoshi Minakata, et al. Org. Lett. 2011, 13, 2966-2969.

Viktor V. Zhdankin, et al. *Org. Lett.* **2013**, *15*, 4010-4013

$$\begin{array}{c}
Mo(CO)_{6} \\
N-O \\
R^{1}
\end{array}$$

$$\begin{array}{c}
Mo(CO)_{6} \\
N+O \\
R^{1}
\end{array}$$

$$\begin{array}{c}
Mo(CO)_{6} \\
N+O \\
R^{1}
\end{array}$$

$$\begin{array}{c}
Mo(CO)_{6} \\
N+O \\
R^{1}
\end{array}$$

$$\begin{array}{c}
Mo(CO)_{6} \\
NH_{2}
\end{array}$$

$$\begin{array}{c}
NH_{2}
\end{array}$$

P. G. Baraldi, et al. *Synthesis* **1987**, 276-278

Example

$$\begin{array}{c|c} & & & \\ \hline \\ H \\ \hline \\ H \\ \end{array} \begin{array}{c} Mo(CO)_6 \\ \hline \\ MeCN/H_2O \\ 80 \ ^{\circ}C, \ 61\% \\ \end{array} \begin{array}{c} O \\ H \\ \hline \\ O \\ \end{array} \begin{array}{c} MeCN/H_2O \\ O \\ \end{array}$$

William Tam, Org. Lett. 2002, 4, 4101-4104

$$Ti(Oi-Pr)_{4} \xrightarrow{+ 2 \text{ EtMgBr} \atop -2 \text{ MgBr}(Oi-Pr)} Et_{2}Ti(Oi-Pr)_{2} \xrightarrow{Ti(Oi-Pr)_{2}} Ti(Oi-Pr)_{2} \xrightarrow{Ti(Oi-Pr)_{3}} Ti(Oi-Pr)_{3}$$

$$R^{1} \xrightarrow{N-O} R^{2} \xrightarrow{2 \text{ Ti}(Oi-Pr)_{3}} \xrightarrow{(i-PrO)_{3}Ti} \xrightarrow{N} \overset{Ti(Oi-Pr)_{3}}{R^{2}} \xrightarrow{H_{2}O} \overset{O}{R^{1}} \xrightarrow{NH_{2}O} \overset{O}{R^{1}} \xrightarrow{R^{2}} \overset{NH_{2}O}{R^{2}}$$

Oleg G. Kulinkovich, et al. Synlett 2004, 1949-1952

Takeo Saegusa, et al. J. Am. Chem. Soc. 1968, 90, 4182.

Yang Mo Goo, et al. *Synth. Commun.* **1994**, *24*, 1433-1439 Martin G. Kociolek, et al. *Synth. Commun.* **2004**, *34*, 4387-4394

That is all, thanks

陈丽君

2021.05.27